Part Number Hot Search : 
P6134 SC1959 H1197 1040CT EPA3670 G5691 HE04002 A224J
Product Description
Full Text Search
 

To Download IRF7842 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 PD - 95864
IRF7842
HEXFET(R) Power MOSFET
Applications l Synchronous MOSFET for Notebook Processor Power l Secondary Synchronous Rectification for Isolated DC-DC Converters l Synchronous Fet for Non-Isolated DC-DC Converters Benefits l Very Low RDS(on) at 4.5V VGS l Low Gate Charge l Fully Characterized Avalanche Voltage and Current
VDSS
RDS(on) max
Qg (typ.) 33nC
40V 5.0m:@VGS = 10V
A A D D D D
S S S G
1
8
2
7
3
6
4
5
Top View
SO-8
Absolute Maximum Ratings
Parameter
VDS VGS ID @ TA = 25C ID @ TA = 70C IDM PD @TA = 25C PD @TA = 70C TJ TSTG Drain-to-Source Voltage Gate-to-Source Voltage Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Pulsed Drain Current Power Dissipation Power Dissipation
Max.
40 20 18 14 140 2.5 1.6 0.02 -55 to + 150
Units
V
f f
c
A W
Linear Derating Factor Operating Junction and Storage Temperature Range
W/C C
Thermal Resistance
RJL RJA
g Junction-to-Ambient fg
Junction-to-Drain Lead
Parameter
Typ.
--- ---
Max.
20 50
Units
C/W
Notes through are on page 9
www.irf.com
1
4/26/04
IRF7842
Static @ TJ = 25C (unless otherwise specified)
Parameter
BVDSS VDSS/TJ RDS(on) VGS(th) VGS(th) IDSS IGSS gfs Qg Qgs1 Qgs2 Qgd Qgodr Qsw Qoss RG td(on) tr td(off) tf Ciss Coss Crss Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Gate Threshold Voltage Coefficient Drain-to-Source Leakage Current Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Forward Transconductance Total Gate Charge Pre-Vth Gate-to-Source Charge Post-Vth Gate-to-Source Charge Gate-to-Drain Charge Gate Charge Overdrive Switch Charge (Qgs2 + Qgd) Output Charge Gate Resistance Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance
Min. Typ. Max. Units
40 --- --- --- 1.35 --- --- --- --- --- 81 --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- 0.037 4.0 4.7 --- - 5.6 --- --- --- --- --- 33 9.6 2.8 10 10.6 12.8 18 1.3 14 12 21 5.0 4500 680 310 --- --- 5.0 5.9 2.25 --- 1.0 150 100 -100 --- 50 --- --- --- --- --- --- TBD --- --- --- --- --- --- --- pF VGS = 0V VDS = 20V ns nC nC VDS = 20V VGS = 4.5V ID = 14A S nA V mV/C A V m
Conditions
VGS = 0V, ID = 250A VGS = 10V, ID = 17A VGS = 4.5V, ID = 14A
V/C Reference to 25C, ID = 1mA
e e
VDS = VGS, ID = 250A VDS = 32V, VGS = 0V VDS = 32V, VGS = 0V, TJ = 125C VGS = 20V VGS = -20V VDS = 20V, ID = 14A
VDS = 16V, VGS = 0V VDD = 20V, VGS = 4.5V ID = 14A Clamped Inductive Load
e
= 1.0MHz
Avalanche Characteristics
EAS IAR Parameter Single Pulse Avalanche Energy Avalanche Current
d
Typ. --- ---
Max. 50 14
Units mJ A
Diode Characteristics
Parameter
IS ISM VSD trr Qrr Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode)A Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge
Min. Typ. Max. Units
--- --- --- --- --- --- --- --- 99 11 3.1 A 140 1.0 150 17 V ns nC
Conditions
MOSFET symbol showing the integral reverse p-n junction diode. TJ = 25C, IS = 14A, VGS = 0V TJ = 25C, IF = 14A, VDD = 20V di/dt = 100A/s
e
e
2
www.irf.com
IRF7842
1000
TOP VGS 10V 5.0V 4.5V 3.5V 3.3V 3.0V 2.8V 2.5V
1000
TOP VGS 10V 5.0V 4.5V 3.5V 3.3V 3.0V 2.8V 2.5V
ID, Drain-to-Source Current (A)
100
BOTTOM
ID, Drain-to-Source Current (A)
100
BOTTOM
10
10
2.5V
1
2.5V 60s PULSE WIDTH Tj = 25C
60s PULSE WIDTH Tj = 150C
1 0.1 1 10 100
0.1 0.1 1 10 100
VDS, Drain-to-Source Voltage (V)
VDS, Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
Fig 2. Typical Output Characteristics
1000.0
2.0
RDS(on) , Drain-to-Source On Resistance (Normalized)
ID, Drain-to-Source Current ()
ID = 18A VGS = 10V
100.0
1.5
T J = 150C
10.0
T J = 25C
1.0
1.0
VDS = 25V 60s PULSE WIDTH
0.1 1.5 2.0 2.5 3.0 3.5 4.0
0.5 -60 -40 -20 0 20 40 60 80 100 120 140 160
VGS, Gate-to-Source Voltage (V)
T J , Junction Temperature (C)
Fig 3. Typical Transfer Characteristics
Fig 4. Normalized On-Resistance Vs. Temperature
www.irf.com
3
IRF7842
100000
VGS, Gate-to-Source Voltage (V)
VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd C oss = C ds + C gd
12 ID= 14A 10 8 6 4 2 0 VDS= 30V VDS= 20V
C, Capacitance (pF)
10000
Ciss
1000
Coss Crss
100 1 10 100
0
20
40
60
80
VDS, Drain-to-Source Voltage (V)
QG Total Gate Charge (nC)
Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage
Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage
1000.0
1000 OPERATION IN THIS AREA LIMITED BY R DS(on)
100.0 T J = 150C 10.0
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
100
10 1msec 1 Tc = 25C Tj = 150C Single Pulse 0.1 0 1 10 100 1000 10msec
1.0
T J = 25C
VGS = 0V 0.1 0.2 0.4 0.6 0.8 1.0 1.2 VSD, Source-to-Drain Voltage (V)
VDS , Drain-toSource Voltage (V)
Fig 7. Typical Source-Drain Diode Forward Voltage
Fig 8. Maximum Safe Operating Area
4
www.irf.com
IRF7842
18 2.4
VGS(th) Gate threshold Voltage (V)
16 14
2.0
ID , Drain Current (A)
12 10 8 6 4 2 0 25 50 75 100 125 150
1.6
ID = 250A
1.2
0.8
0.4 -75 -50 -25 0 25 50 75 100 125 150
T J , Junction Temperature (C)
T J , Temperature ( C )
Fig 9. Maximum Drain Current Vs. Case Temperature
Fig 10. Threshold Voltage Vs. Temperature
100
10
Thermal Response ( Z thJA )
1
D = 0.50 0.20 0.10 0.05 0.02 0.01
J R1 R1 J 1 2 R2 R2 R3 R3 3 C 3
0.1
Ri (C/W) i (sec) 10.48 0.138167 26.83 12.69 1.8582 44.8
0.01
1
2
Ci= i/Ri Ci i/Ri
0.001
SINGLE PULSE ( THERMAL RESPONSE )
Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthja + Tc
0.1 1 10 100
0.0001 1E-006 1E-005 0.0001 0.001 0.01
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient
www.irf.com
5
IRF7842
RDS(on), Drain-to -Source On Resistance ( m)
16
200
EAS, Single Pulse Avalanche Energy (mJ)
ID = 18A
12
160
ID 6.7A 7.5A BOTTOM 14A
TOP
120
8
T J = 125C
4
80
T J = 25C
0 2.0 4.0 6.0 8.0 10.0
40
0 25 50 75 100 125 150
VGS, Gate-to-Source Voltage (V)
Starting T J, Junction Temperature (C)
Fig 12. On-Resistance Vs. Gate Voltage
Fig 13c. Maximum Avalanche Energy Vs. Drain Current
LD VDS
15V
VDS
L
DRIVER
+
VDD -
RG
VGS 20V
D.U.T
IAS tp
+ V - DD
A
D.U.T VGS Pulse Width < 1s Duty Factor < 0.1%
0.01
Fig 13a. Unclamped Inductive Test Circuit
V(BR)DSS tp
Fig 14a. Switching Time Test Circuit
VDS
90%
10%
VGS
I AS
td(on)
tr
td(off)
tf
Fig 13b. Unclamped Inductive Waveforms
Fig 14b. Switching Time Waveforms
6
www.irf.com
IRF7842
D.U.T
Driver Gate Drive
+
P.W.
Period
D=
P.W. Period VGS=10V
+
Circuit Layout Considerations * Low Stray Inductance * Ground Plane * Low Leakage Inductance Current Transformer
*
D.U.T. ISD Waveform Reverse Recovery Current Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt
-
-
+
RG
* * * * dv/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test
VDD
VDD
+ -
Re-Applied Voltage Inductor Curent
Body Diode
Forward Drop
Ripple 5%
ISD
* VGS = 5V for Logic Level Devices Fig 15. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET(R) Power MOSFETs
Id
Current Regulator Same Type as D.U.T.
Vds Vgs
50K 12V .2F .3F
D.U.T. VGS
3mA
+ V - DS
Vgs(th)
IG
ID
Current Sampling Resistors
Qgs1 Qgs2
Qgd
Qgodr
Fig 16. Gate Charge Test Circuit
Fig 17. Gate Charge Waveform
www.irf.com
7
IRF7842
SO-8 Package Details
D A 5 B
DIM A b INCHES MIN .0532 .013 .0075 .189 .1497 MAX .0688 .0098 .020 .0098 .1968 .1574 MILLIMET ERS MIN 1.35 0.10 0.33 0.19 4.80 3.80 MAX 1.75 0.25 0.51 0.25 5.00 4.00
A1 .0040
6 E
8
7
6
5 H 0.25 [.010] A
c D E e e1 H
1
2
3
4
.050 BASIC .025 BASIC .2284 .0099 .016 0 .2440 .0196 .050 8
1.27 BASIC 0.635 BAS IC 5.80 0.25 0.40 0 6.20 0.50 1.27 8
6X
e
K L y
e1
A
K x 45 C 0.10 [.004] y 8X c
8X b 0.25 [.010]
A1 CAB
8X L 7
NOT ES : 1. DIMENS IONING & T OLERANCING PER AS ME Y14.5M-1994. 2. CONT ROLLING DIMENS ION: MILLIMET ER 3. DIMENS IONS ARE S HOWN IN MILLIMET ERS [INCHES ]. 4. OUT LINE CONFORMS T O JEDEC OUT LINE MS -012AA. 5 DIMENS ION DOES NOT INCLUDE MOLD PROT RUS IONS . MOLD PROT RUS IONS NOT T O EXCEED 0.15 [.006]. 6 DIMENS ION DOES NOT INCLUDE MOLD PROT RUS IONS . MOLD PROT RUS IONS NOT T O EXCEED 0.25 [.010]. 7 DIMENS ION IS THE LENGT H OF LEAD F OR S OLDERING T O A S UBS T RAT E. 3X 1.27 [.050] 6.46 [.255]
FOOT PRINT 8X 0.72 [.028]
8X 1.78 [.070]
SO-8 Part Marking
EXAMPLE: T HIS IS AN IRF7101 (MOS FET) DAT E CODE (YWW) P = DES IGNAT ES LEAD-FREE PRODUCT (OPT IONAL) Y = LAS T DIGIT OF T HE YEAR WW = WEEK A = AS S EMBLY S IT E CODE LOT CODE PART NUMBER
8 www.irf.com
INT ERNAT IONAL RECTIFIER LOGO
XXXX F7101
IRF7842
SO-8 Tape and Reel
TERMINAL NUMBER 1
12.3 ( .484 ) 11.7 ( .461 )
8.1 ( .318 ) 7.9 ( .312 )
FEED DIRECTION
NOTES: 1. CONTROLLING DIMENSION : MILLIMETER. 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES). 3. OUTLINE CONFORMS TO EIA-481 & EIA-541.
330.00 (12.992) MAX.
14.40 ( .566 ) 12.40 ( .488 ) NOTES : 1. CONTROLLING DIMENSION : MILLIMETER. 2. OUTLINE CONFORMS TO EIA-481 & EIA-541.
Notes: Repetitive rating; pulse width limited by max. junction temperature. Starting TJ = 25C, L = 0.5mH RG = 25, IAS = 14A. Pulse width 400s; duty cycle 2%.
When mounted on 1 inch square copper board R is measured at TJ approximately 90C
Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR's Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.4/04
www.irf.com
9


▲Up To Search▲   

 
Price & Availability of IRF7842

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X